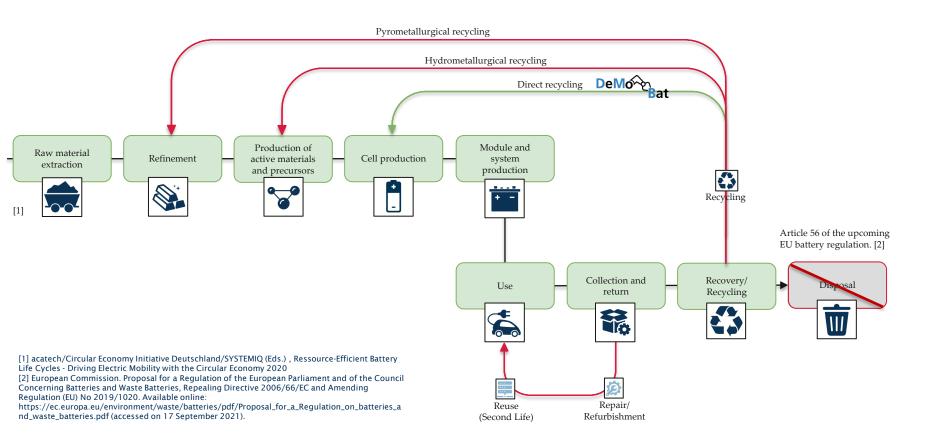


A Direct Waterjet-Based Recycling Process for Lithium-Ion Cathodes in the Context of Sustainability and Requirements for a European Circular Economy

Green Batteries Conference 2021 05th October 2021

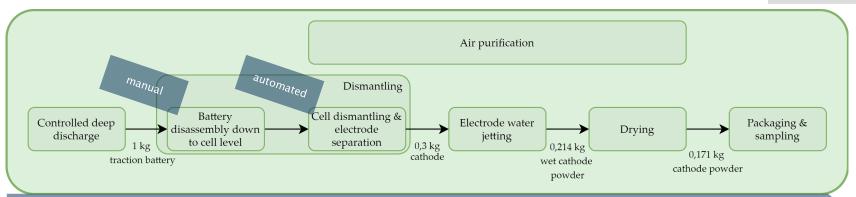
Leonard Kurz and Steven Wehrstein

Leonard.Kurz@hs-esslingen.de, Steven.Wehrstein@hs-esslingen.de

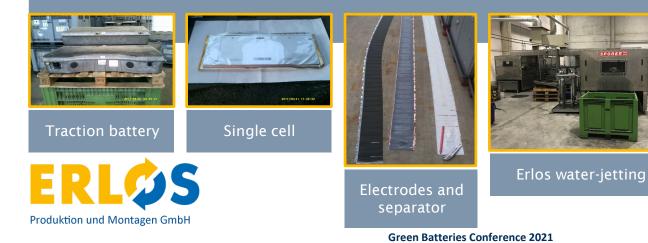

AGENDA

- Circular economy for traction batteries
- Waterjet-based direct recycling of Li-Ion cathodes
- Recycling efficiency and EU recovery targets
- Life Cycle Assessment
 - Goal and scope
 - Life cycle inventory
 - | Life cycle impact assessment
 - Evaluation
- Conclusions

CIRCULAR ECONOMY FOR TRACTION BATTERIES



Green Batteries Conference 2021


WATERJET-BASED DIRECT CATHODE RECYCLING

Production environment at the Erlos GmbH (Zwickau, Germany).

Dry recyclate

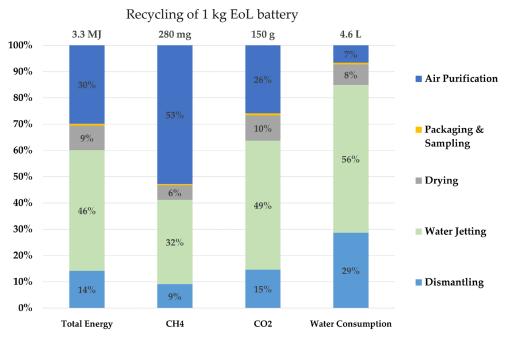
Efficiency targets of the upcoming EU battery regulation [2]

Commodity	Mandatory target	Mandatory target	Mandatory target	Erlos recycling efficiency
Date from	01.01.2025	01.01.2026	01.01.2030	
Copper	-	90 %	95 %	Min. 99 %
Cobalt	-	90 %	95 %	96 - 97 %
Nickel	-	90 %	95 %	
Lithium	-	35 %	70 %	~ 86 % Li recovery
0,0552 wt% Li fr LiPF ₆ [b]	om Not recover		of battery system	
1,2 wt% Li fror active materials	· · · · · · · · · · · · · · · · · · ·	ng ~ 86 wt% Li battery reco	vered [2] Euro Europea and Was Amendii	pean Commission. Proposal for a Regulation of n Parliament and of the Council Concerning Ba te Batteries, Repealing Directive 2006/66/EC a 1g Regulation (EU) No 2019/1020. Available or c.europa.eu/environment/waste/batteries/pd

Goal and scope of the study

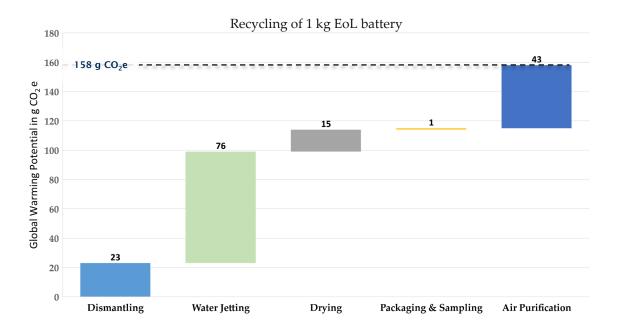
Ecological evaluation of the **direct water-jet based recycling process** for cathode materials of Li-Ion batteries, performed by Erlos GmbH (Zwickau, Germany), using **life cycle assessment** methodology according to the standards DIN EN ISO 14040/14044.

Focus on the evaluation of the global warming potential (GWP).


System boundary of the LCA study for the Erlos direct battery recycling.

Life Cycle Inventory (LCI) Analysis

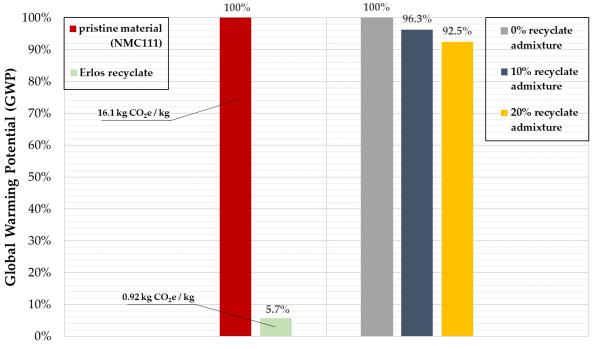
Life cycle inventory of the waterjet-based battery recycling. Selected emissions/consumptions in the individual process steps.


- Water jetting dominant in all categories except CH₄.
- Air purification with largest emissions for CH₄ caused by activated carbon.
- Overall low emissions, <u>in</u> <u>comparison:</u>
 - 39.5 MJ total energy input for same amount of pristine NMC111 material. [3]
 - 7665 liters of water consumption per liter of biodiesel production. [4]

[3] Dai, Q.; Kelly, J.C.; Gaines, L.; Wang, M. Life Cycle Analysis of Lithium-Ion Batteries for Automotive Applications. Batteries 2019, 5, 48, doi:10.3390/batteries5020048.
[4] Hammond, G.P. and Li, B. (2016), Environmental and resource burdens associated with world biofuel production out to 2050: footprint components from carbon emissions and land use to waste arisings and water consumption. GCB Bioenergy, 8: 894-908.

Life Cycle Impact Assessment (LCIA) - Global Warming Potential (GWP)

- Emission of 924 g CO₂equivalents (CO₂e) for the recycling of 1kg NMC material.
- Water jetting process step largest emitter at 48%.
- Emissions during exhaust air purification mainly due to activated carbon as filter medium.


Global warming potential of the waterjet-based battery recycling in the individual process steps. [5]

[5] Kurz, L.; Faryadras, M.; Klugius, I.; Reichert, F.; Scheibe, A.; Schmidt, M.; Wörner, R. Global Warming Potential of a New Waterjet-Based Recycling Process for Cathode Materials of Lithium-Ion Batteries. Batteries 2021, 7, 29. https://doi.org/10.3390/batteries7020029

HOCHSCHULE ESSLINGEN

Evaluation of the Results

- High savings potential for cathodes. Due to the very good ecological performance of the Erlos recyclate.
 - In comparison: Better environmental performance by a factor of 8 to 26 compared to the hydro- and pyrometallurgical recycling route. [6-8]

Active material

Battery level

Reduction potential for reuse in new batteries in terms of global warming potential.

[6] Buchert M.; Sutter, J. Aktualisierte Ökobilanzen zum Recyclingverfahren LithoRec II für Lithium-Ionen-Batterien, Berlin, Darmstadt, 2016.
 [7] Buchert, M.; Sutter, J. Aktualisierte Ökobilanz zum Recyclingverfahren EcoBatRec für Lithium-Ionen-Batterien, Berlin, Darmstadt, 2016.
 [8] Buchert, M.; Jenseit, W.; Merz, C.; Schüler, D. Verbundprojekt: Entwicklung eines realisierbaren Recyclingverfahren zuk ünftiger Elektrofahrzeuge - LiBRI: Teilprojekt: LCA der Recyclingverfahren, Berlin, Darmstadt, 2011.

Green Batteries Conference 2021

CONCLUSIONS

- Direct recycling route seeks to recover black mass unchanged and enables avoiding of costly manufacturing process steps.
- Waterjet-based direct recycling process for Li-Ion cathodes can meet the upcoming recovery targets of the EU battery regulation.
- Life cycle inventory analysis shows that the process is capable of detaching and recovering cathode material from the collector foil with minimal use of resources.
- Global warming potential of the recyclate is significantly lower than that of pristine material, which can lead to a high reductions in the global warming potential of new cells by admixture.
- Compared to the hydro- and pyrometallurgical recycling route, this direct recycling process performs significantly better from an ecological perspective.
- | Electrochemical activity of the recyclate is still being researched as part of the project DeMoBat.

Authors

Leonard Kurz Steven Wehrstein Ines Klugius Frederik Reichert Andreas Scheibe Ralf Wörner

Matthias Schmidt

Correspondence:

INEM - <u>Ralf.Woerner@hs-esslingen.de</u>

Erlos GmbH - Matthias.Schmidt@weckpluspoller.de

Acknowledgement

The authors wish to thank the Ministry of the Environment, Climate Protection and the Energy Sector Baden-Wuerttemberg for funding this work under the funding code L7520105 as part of the joint project "DeMoBat".

Green Batteries Conference 2021