

TOWARDS A SUSTAINABLE FUTURE FOR ENERGY STORAGE

INTERNATIONAL SOCIETY FOR ENERGY AND SUSTAINABILITY RESEARCH/ KUMARAGURU COLLEGE OF TECHNOLOGY INDIA

BIOMIMICRY AND BATTERIES

DHIKSHA MOHAN

SUSTAINABILITY IN BATTERY TECHNOLOGY

DEMAND FOR ENERGY STORAGE

SUSTAINABLE BATTERIES

ENVIRONMENTAL

RAW MATERIAL EXTRACTION

DISPOSAL

RECYCLING

ADVICE FROM THE EXPERTS

NATURE DOESN'T HAVE BATTERIES,YET IT SOLVES SIMIL PROBLEMS

ALL THE EXISTING AND DOCUMENTED NATURE-INSPIRED BATTERY INVENTIONS NOT LIMITED ON THE SOLUTION CONCERNING A SPECIFIC BATTERY COMPONENT

METHODOLOGY

DESCRIPTIVE REVIEW

SCOPING & LIMITATIONS

WHAT IS BIOMIMICRY?

A practice that learns from and mimics the strategies found in nature to solve human design challenges Challenge Lack of biocompatible, mechanically flexible batteries for implants

ELECRTIC EEL- INSPIRED FLEXIBLE & BIOCOMPATIBLE BATTERIES

Gradients of ions between miniature polyacrylamide hydrogel compartments

Thomas B. H. Schroeder, Anirvan Guha et al. An electric-eel-inspired soft power source from stacked hydrogels

next generation of pacemakers, prosthetics & medical implants'

'To drive the

Challenge Li-ion batteries take up 20% of the carrying capacity and overall weight of a robot

MAMMALIAN FAT TISSUES **INSPIRED STRUCTURAL BATTERIES**

times as much capacity than the typical single lithium-ion battery is achieved

Carbon-based aramid nanofibers

Mingqiang Wang, Drew Vecchio et al. Biomorphic structural batteries for robotics

Challenge Structural batteries are heavy, short-lived, or unsafe

CARTILAGE INSPIRED STRUCTURAL BATTERIES

capacity is achieved by a zinc battery with a cartilage-like solid electrolyte for more than 100 cycles

1. Mingqiang Wang, Drew Vecchio et al. Biomorphic structural batteries for robotics

A perfect prototype for an iontransporting material in batteries Challenge To precisely control their molecular structure of Synthetic polymers

SPIDER-WEB INSPIRED HIGH PERFORMANCE ANODE

Yuqiang Jin, Haocheng Yuan et al. Bio-inspired spider-web-like membranes with a hierarchical structure for high performance lithium/sodium ion battery electrodes

'It selfassembles at the nanoscale which is very beneficial for the proton conductivity'

Structural degradation & instability of Si in Li-ion batteries

POMEGRANATE-INSPIRED HIERARCHICAL STRUCTURED SILICON ANODE

Liu, N., Lu, Z., Zhao, J. et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes.

SMALLER, LIGHTER AND MORE POWERFUL BATTERIES

Challenge Costly and more efficient nanoscale materials for Li ion batteries

CHITON TEETH - INSPIRED NANOSCALE MATERIAL FOR LI-ION BATTERIES

production costs'

Daniel Nocera, Caltech's Nate Lewis et al. Integrated transcriptomic and proteomic analyses of a molecular mechanism of radular teeth biomineralization in Cryptochiton stelleri

1. Hydrated iron oxide crystals nucleation 2. Conversion to magnetic iron oxide 3. Parallel rods along these organic fibers

'Engineering nanocrystals can be grown at significantly lower temperatures, lower

Challenge Self-assembled molecular templates to produce hierarchical carbon materials

UNICELLULAR ALGAE- INSPIRED CARBON ANODES

Self-assembled molecular templates

Liu, N., Lu, Z., Zhao, J. et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes.

of the original capacity is retained, even when the current density is increased 600-fold

Challenge Sodium-ion batteries are heavier & cannot handle the high voltage levels

MAMMALIAN BONE- INSPIRED SPONGE-LIKE BATTERY ARCHITECTURE

Sodium cathode material called NVP (Na3V2(PO4)3)

Kang Ho Shin, Sul Ki Park et al. Biomimetic composite architecture achieves ultrahigh rate capability and cycling life of sodium ion battery cathodes

of its capacity is maintained after 10,000 cycles of discharging and recharging

Challenge Biodegradable yet

efficient batteries

SUGAR FUELED BATTERY

Zhu, Z., Kin Tam, T., Sun, F. et al. A high-energy-density sugar biobattery based on a synthetic enzymatic pathway

times last longer than current lithiumion batteries

BATTERY DESIGN

SHAPE

BATTERY FABRICATION

BATTERY RECYCLING

PROPOSED APPROACH

HOW NATURE, recycles? produces? make materials? harvests energy? stores energy? transports energy?

CALL FOR ACTION!

NON-FLAMMABLE NON-TOXIC INEXPENSIVE MODULAR ECO-FRIENDLY CONDUCIVE TO LIFE RECYCLABLE

BILLION YAEARS OF RESEARCH & DEVELOPMENT

HOW TO USE BIOMIMICRY AS A DESIGN TOOL?

biomimicry functions like nature

biomorphism ^{Iooks like nature} bioutilization

https://biomimicry.org/

WAY FORWARD

We just have to look around! HOW WILL NATURE SOLVE THIS?

lt's time to ask nature.

Innovation Inspired by Nature

Innovation Inspired by Nature

 ${\sf Q}$ asknature.org

DHKSHA MOHAN, B.E., EEE

dhiksha.18ee@kct.ac.in

https://asknature.org/