Press releases

Cancel
  • In modern architecture, large-area glazing is a continuing trend because of its appearance and design variety. Large southwards-oriented windows help to reduce the energy demand for heating in winter. However, large-area glazing may significantly increase the energy demand for cooling and air-conditioning in hot summers. Smart Glass Solutions – such as electrochromic (EC) and thermochromic (TC) windows and glass façades –control the radiation energy transfer with the "touch of a button" and thus can drastically reduce the energy demands for heating and air conditioning of large buildings. In addition, they allow superior indoor lighting comfort in contrast to conventional mechanical window blinds. On 1st October 2019, the EU-funded initiative "Switch2save" was launched to improve the availability and affordability of EC and TC smart glass technologies. The consortium of ten partners from research and industry will demonstrate the energy saving potential of smart glass solutions in two fully-operational buildings.

    more info
  • Electromobility sets challenging requirements for new high performance batteries – cruising range, life span, safety, or charging times, to mention only a few. An intrinsic challenge is the resource need for a growing number of big car batteries. Ten partners from industry and research organizations successfully joined forces in the EU funded project ECO COM'BAT to develop a sustainable next generation of high-voltage lithium-ion batteries.

    more info
  • A world moving from fossil fuels to renewable energy will rely more and more on energy storage and in particular on batteries. Better batteries can reduce the carbon footprint of the transport sector, stabilise the power grid, and much more. The “Battery 2030+” large-scale research initiative will gather leading scientists in Europe, as well as the industry, to achieve a leap forward in battery science and technology. The first “Battery 2030+” project kicks off in March 2019 and will lay the basis for this large-scale research initiative on future battery technologies.

    more info
  • Strategic partnership between Empa and Fraunhofer-Gesellschaft / 2019

    Solid state batteries for tomorrow's electric cars

    Press Release / 22.2.2019

    Today‘s electromobility consumes large amounts of traction batteries, preferably high-performance lithium-ion batteries. These batteries contain valuable raw materials and should not be discarded as waste at the end of their life. Efficient recycling requires closed materials loops and a logistic solution capable of growing along with the increasing number of waste batteries from more and more electric vehicles. The research project »Automotive Battery Recycling 2020« which was launched earlier this year with EU-funding from EIT RawMaterials sets out to identify efficient recycling routines that are ecologically sound, economically viable and readily transferable to industrial scale. The overall aim is to improve the EU-wide recycling chain and add to a secure supply of raw materials through the recovery of valuable materials from waste streams.

    more info
  • Fraunhofer-Gesellschaft - Europe’s largest institution for applied research - and Ynvisible sign a MoU in the field of electrochromic inks and devices. The co-operation aims to accomplish several objectives related to the development and proliferation of electrochromic inks and devices. The agreement outlines that joint business explorations will be conducted, seeking to enhance commercial uses of Fraunhofer’s technologies and skills in electrochromics by combining them with Ynvisible’s technology and beyond. Developments will be jointly carried out by using a combination of each parties’ proprietary technologies, skills and capabilities.

    more info
  • Today‘s electromobility consumes large amounts of traction batteries, preferably high-performance lithium-ion batteries. These batteries contain valuable raw materials and should not be discarded as waste at the end of their life. Efficient recycling requires closed materials loops and a logistic solution capable of growing along with the increasing number of waste batteries from more and more electric vehicles. The research project »Automotive Battery Recycling 2020« which was launched earlier this year with EU-funding from EIT RawMaterials sets out to identify efficient recycling routines that are ecologically sound, economically viable and readily transferable to industrial scale. The overall aim is to improve the EU-wide recycling chain and add to a secure supply of raw materials through the recovery of valuable materials from waste streams.

    more info
  • Whether in use as starter battery in vehicles, as power back-up or for the storage of energy from renewable sources: Lead-acid batteries are among the oldest and most common battery systems in Germany. About 200 000 tons of them come to market each year. And their disposal is excellently organized: in Germany, waste batteries undergo a well-established recycling by manufacturers and processors. But the turnaround in German energy policy is posing new demands on electrochemical energy storage systems. Electric vehicles and stationary storage units for photovoltaic systems, for instance, look for long service lives and high power densities. The battery experts of the Fraunhofer R&D Center Electromobility Bavaria located at the Fraunhofer Institute for Silicate Research ISC now joined forces with a consortium of partners from industry and research to shape up this old system and make it fit for the future.

    more info
  • No chance without them: High-performance batteries are the key to electromobility. And the market is growing. Europe expects to see a lot more of electric vehicles by 2030. The EU commission is promoting the development of high-performance batteries accordingly. Among the researchers working to make the vision come true are those of the Fraunhofer Institute for Silicate Research ISC in Würzburg, Germany. They take part in the collaborative project SOLID that was recently launched to develop a simple low-cost method for battery mass production via the sol-gel route. The aim is to provide industry with the much needed large-scale production option for safe high-performance lithium-based solid state batteries.

    more info
  • Lithium-ion batteries are subject to a myriad of negative influences during their life span. The mere production process itself and subsequent transport from the production site impose mechanical stress. Whether in power tools, electrically driven forklift trucks, cars or trains – their life will always be full of vibration, sudden impact or shock whenever obstacles have to be crossed, when they are dropped or simply when charging or discharging induces volume changes in their electrodes. In late 2017, the project “ReViSEDBatt“ was launched to investigate the effects of mechanical stresses on the cycle life and safety of lithium-ion batteries. The overall project goal is to optimize batteries so they can better cope with everyday stress.

    more info
  • In the SoCUS project, the Fraunhofer R&D Center for Electromobility Bavaria is developing cost-effective sensor systems that can be integrated directly into the battery and can measure the state of charge more accurately than commercially available systems. The systems use ultrasound pulses to measure and evaluate the density of the negative anode which changes with the state of charge of the cell.

    more info