Press releases

Cancel
  • EU-project SPARTACUS
    © Fraunhofer ISC

    The SPARTACUS research project as part of the EU research initiative BATTERY 2030+ has now been running for around a year. The project has successfully mastered the first milestones and project goals. On the way to sensor-based optimization of charging times, range and service life for lithium-ion batteries, the SPARTACUS project team has worked on a number of partial aspects over the past 12 months. Now the individual components can be combined into a complete system.

    more info
  • Project IDcycLIB Logo

    Technological sovereignty and job security in Germany, the sustainable rethinking and redirection in the use of raw materials - the most efficient possible use and resource-conserving utilization concepts - are major challenges facing the industrial sectors in Europe and worldwide. In particular, the shift away from fossil-fueled mobility to sustainable electromobility based on renewable energy sources has intensified the discussion about the resource requirements for the batteries needed for this. This is precisely where the IDcycLIB joint project comes in with forward-looking concepts.

    more info
  • Green Batteries Conference 2021
    © Fraunhofer ISC

    The Green Batteries Conference 2021 assembles experts from all parts of the battery value chain and achieve a common understanding of the different aspects of sustainable batteries – from raw materials and storage sites to battery concepts, design for recycling, sustainable manufacturing and use, recycling technologies and closing the loop. The conference will be held online on Tuesday afternoons in October 2021, and the response is already very promising.

    more info
  • HiQCARB Carbon Black
    © Orion Engineered Carbons GmbH

    Lithium-ion batteries require in addition to lithium metal a number of sophisticated functional materials for their performance. Some of them sound rather unspectacular: conductive additives. In fact, conductive additives like carbon black or carbon nanotubes are a decisive component for the performance and environmental benignity of lithium-ion batteries. The recently launched collaborative project HiQ-CARB aims to provide new carbons with a superior performance and a low carbon footprint for future green batteries in Europe. HiQ-CARB is receiving EU funding from EIT RawMaterials to scale up and validate this important battery material.

    more info
  • Project SPARTACUS
    © Fraunhofer ISC

    Faster charging, longer stability of performance not only for electric vehicles but also for smartphones and other battery powered products. What still sounds like science fiction today might be feasible in the future, not least thanks to innovations the recently started “Spartacus” research project wants to achieve. By utilizing advanced sensors and cell management systems, “Spartacus” aims to reduce charging times by up to 20 % without compromising the reliability and service life of batteries. The European Union is funding “Spartacus” as part of the Battery 2030+ research initiative.

    more info
  • Batteries will play a crucial role in the phase-out of fossil fuels, in particular in the transport sector. If the goal of reducing CO2 emissions in Germany by 55 percent by 2030 is to be achieved, future batteries must above all become more sustainable and also cheaper. That is a big challenge, because the development of new batteries takes a long time - longer than we can wait for the green transition. The EU project BIG-MAP (Battery Interface Genome - Materials Acceleration Platform), aims at accelerating the speed of battery development by changing the way of inventing, so that future sustainable and ultra-high-performance batteries can be developed 10 times faster than today.

    more info
  • The European research initiative BATTERY 2030+ is now getting going. The ambition is to make Europe the world-leader in the development and production of the batteries of the future. These batteries need to store more energy, have a longer life, and be safer and more environmentally friendly than today’s batteries in order to facilitate the transition to a more climate-neutral society. The project is led from Uppsala University.

    more info
  • In modern architecture, large-area glazing is a continuing trend because of its appearance and design variety. Large southwards-oriented windows help to reduce the energy demand for heating in winter. However, large-area glazing may significantly increase the energy demand for cooling and air-conditioning in hot summers. Smart Glass Solutions – such as electrochromic (EC) and thermochromic (TC) windows and glass façades –control the radiation energy transfer with the "touch of a button" and thus can drastically reduce the energy demands for heating and air conditioning of large buildings. In addition, they allow superior indoor lighting comfort in contrast to conventional mechanical window blinds. On 1st October 2019, the EU-funded initiative "Switch2save" was launched to improve the availability and affordability of EC and TC smart glass technologies. The consortium of ten partners from research and industry will demonstrate the energy saving potential of smart glass solutions in two fully-operational buildings.

    more info